
Local Naive Bayes Nearest Neighbor for Image Classification

Sancho McCann David G. Lowe
Department of Computer Science, University of British Columbia

{sanchom, lowe}@cs.ubc.ca

Abstract

We present Local Naive Bayes Nearest Neighbor, an im-
provement to the NBNN image classification algorithm that
increases classification accuracy and improves its ability to
scale to large numbers of object classes. The key observa-
tion is that only the classes represented in the local neigh-
borhood of a descriptor contribute significantly and reliably
to their posterior probability estimates. Instead of main-
taining a separate search structure for each class’s train-
ing descriptors, we merge all of the reference data together
into one search structure, allowing quick identification of a
descriptor’s local neighborhood. We show an increase in
classification accuracy when we ignore adjustments to the
more distant classes and show that the run time grows with
the log of the number of classes rather than linearly in the
number of classes as did the original. Local NBNN gives
a 100 times speed-up over the original NBNN on the Cal-
tech 256 dataset. We also provide the first head-to-head
comparison of NBNN against spatial pyramid methods us-
ing a common set of input features. We show that local
NBNN outperforms all previous NBNN based methods and
the original spatial pyramid model. However, we find that
local NBNN, while competitive with, does not beat state-of-
the-art spatial pyramid methods that use local soft assign-
ment and max-pooling.

1. Introduction
A widely used approach to object category recognition

has been the bag-of-words method [7] combined with the
spatial pyramid match kernel [14]. This approach uses vi-
sual feature extraction, quantizes features into a limited set
of visual words, and performs classification, often with a
support vector machine [12, 13].

In contrast to the bag-of-words method, Boiman et al. [3]
introduced a feature-wise nearest neighbor algorithm called
Naive Bayes Nearest Neighbor (NBNN). They do not quan-
tize the visual descriptors and instead retain all of the refer-
ence descriptors in their original form.

Boiman et al. [3] showed that quantizing descriptors in

(a) The original NBNN asks, “Does this descriptor look like a keyboard? a
car? ... a dog?”

(b) Local NBNN asks, “What does this descriptor look like?”

Figure 1. Instead of considering classes individually, we search
one merged index.

the bag-of-words model greatly decreases the discrimina-
tivity of the data. The bag-of-words model usually reduces
the high dimensional feature space to just a few thousand
visual words.

Despite NBNN’s independence assumption (indepen-
dence of the descriptors in the query image), Boiman et al.
demonstrated state-of-the-art performance on several object
recognition datasets, improving upon the commonly used
SVM classifier with a spatial pyramid match kernel.

NBNN is a simple algorithm. The task is to deter-
mine the most probable class Ĉ of a query image Q. Let
d1, . . . , dn be all the descriptors in the query image. The
training data for a class is a collection of descriptors ex-
tracted from a set of labelled example images. These are
stored in data structures that allow for efficient nearest
neighbor searches (the nearest neighbor of descriptor di in
class C is NNC(di)). The original NBNN is listed as Algo-
rithm 1.

1

Algorithm 1 NBNN(Q) [3]
Require: A nearest neighbor index for each C, queried us-

ing NNC().
Require: A query image Q, with descriptors di.

for all descriptors di ∈ Q do
for all classes C do

totals[C]← totals[C] + ‖di −NNC(di)‖2
end for

end for
return argminC totals[C]

Our contribution is a modification to the original NBNN
algorithm that increases classification accuracy and pro-
vides a significant speed-up when scaling to large numbers
of classes. We eliminate the need to search for a nearest
neighbor in each of the classes. Instead, we merge the refer-
ence datasets together and use an alternative nearest neigh-
bor search strategy in which we only adjust the scores for
the classes nearest to any query descriptor. The question
becomes, “What does this descriptor look like?”, instead of
“Does this descriptor look like one from a car? a duck? a
face? a plane? ...” Figure 1 gives a conceptual visualization.

We also provide the first head-to-head comparison of
NBNN based methods with spatial pyramid methods using
a common feature set. Previous work [3, 19] has only pro-
vided comparisons with published figures while extracting
different feature sets for their experiments.

2. Relation to previous work
An obvious issue with the naive Bayes approach is that

it makes the unrealistic assumption that image features pro-
vide independent evidence for an object category.

In defense of the naive Bayes assumption, Domingos and
Pazzani [9] demonstrate the applicability of the naive Bayes
classifier even in domains where the independence assump-
tion is violated. They show that while the independence
assumption does need to hold in order for the naive Bayes
classifier to give optimal probability estimates, the classi-
fier can perform well as regards misclassification rate even
when the assumption doesn’t hold. They perform exten-
sive evaluations on many real-world datasets that violate
the independence assumption and show classification per-
formance on par with or better than other learning methods.

Behmo et al. [2] corrects NBNN for the case of unbal-
anced training sets. Behmo et al. implemented and com-
pared a variant of NBNN that used n 1-vs-all binary clas-
sifiers, highlighting the effect of unbalanced training data.
In the experiments we present, the training sets are approxi-
mately balanced, and we compare our results to the original
NBNN algorithm. Behmo et al. also point out that a ma-
jor practical limitation of NBNN is the time that is needed

to perform the nearest neighbor search, which is what our
work addresses.

The most recent work on NBNN is by Tuytelaars et al.
[19]. They use the NBNN response vector (the ‘totals’ ar-
ray in Algorithm 1) of a query image as the input features
for a kernel SVM. This allows for discriminative training
and combination with other complimentary features by us-
ing multiple kernels. Kernel NBNN gives increased clas-
sification accuracy over using the basic NBNN algorithm.
Our work is complimentary to this in that the responses re-
sulting from our local NBNN could also be fed into their
second layer of discriminative learning. Due to the poor
scaling of the original NBNN algorithm, Tuytelaars et al.
had to heavily subsample the query images in order to ob-
tain timely results for their experiments, hampering their
absolute performance values. In NBNN, what dominates
is the time needed to search for nearest neighbors in each
of the object category search structures. Even approximate
methods can be slow here and scale linearly with the num-
ber of categories.

The method we will introduce is a local nearest neigh-
bor modification to the original NBNN. Other methods tak-
ing advantage of local coding include locality constrained
linear coding by [20] and early cut-off soft assignment by
[15]. Both limit themselves to using only the local neigh-
borhood of a descriptor during the coding step. By restrict-
ing the coding to use only the local dictionary elements,
these methods achieve improvements over their non-local
equivalents. The authors hypothesize this is due to the man-
ifold structure of descriptor space, which causes Euclidean
distances to give poor estimates of membership in code-
words far from descriptor being coded [15].

NBNN methods can be compared to the popular spatial
pyramid methods [4, 14, 20], which achieve state-of-the-art
results on image categorization problems. The original spa-
tial pyramid method used hard codeword assignment and
average pooling within each of the hierarchical histogram
bins. Today, the best performing variants of spatial pyra-
mid use local coding methods combined with max pool-
ing [4, 5, 15, 20]. State-of-the-art spatial pyramid meth-
ods achieve high accuracy on benchmark datasets, but there
has been no head-to-head comparison of NBNN methods
against spatial pyramid methods. Previous work has only
compared against published figures, but these comparisons
are based on different feature sets, which makes it difficult
to isolate the contributions of the features from the contri-
butions of the methods.

3. Naive Bayes Nearest Neighbor

To help motivate and justify our modifications to the
NBNN algorithm, this section provides an overview of the
original derivation [3]. Each image Q is classified as be-

longing to class Ĉ according to

Ĉ = argmax
C

p(C|Q). (1)

Assuming a uniform prior over classes and applying
Bayes’ rule,

Ĉ = argmax
C

log(p(Q|C)). (2)

The assumption of independence of the descriptors di found
in image Q gives

Ĉ = argmax
C

[
log(

n∏
i=1

p(di|C))

]
(3)

= argmax
C

[
n∑

i=1

log p(di|C)

]
. (4)

Next, approximating p(di|C) in Equation 4 by a Parzen
window estimator, with kernel K, gives

p̂(di|C) =
1

L

L∑
j=1

K(di − dCj) (5)

where there are L descriptors in the training set for class C
and dCj is the j-th nearest descriptor in class C. This can be
further approximated by using only the r nearest neighbors
as

p̂r(di|C) =
1

L

r∑
j=1

K(di − dCj) (6)

and NBNN takes this to the extreme by using only the single
nearest neighbor (NNC(di)):

p̂1(di|C) =
1

L
K(di −NNC(di)). (7)

Choosing a Gaussian kernel for K and substituting Equa-
tion 7 (the single nearest neighbor approximation of
p(di|C)) into Equation 4 (the sum of log probabilities)
gives:

Ĉ = argmax
C

[
n∑

i=1

log
1

L
e−

1
2σ2
‖di−NNC(di)‖2

]
(8)

= argmin
C

[
n∑

i=1

‖di −NNC(di)‖2
]
. (9)

Equation 9 is the NBNN classification rule: find the class
with the minimum distance from the query image.

4. Towards local NBNN
Before introducing local NBNN, we first present some

results demonstrating that we can be selective with the up-
dates that we choose to apply for each query descriptor. We

start by re-casting the NBNN updates as adjustments to the
posterior log-odds of each class. In this section, we show
that only the updates giving positive evidence for a class
are necessary.

The effect of each descriptor in a query image Q can be
expressed as a log-odds update. This formulation is useful
because it allows us to restrict updates to only those classes
for which the descriptor gives significant evidence. Let C
be some class and C be the set of all other classes.

The odds (O) for class C is given by

OC =
P (C|Q)

P (C|Q)
(10)

=
P (Q|C)P (C)
P (Q|C)P (C)

(11)

=

n∏
i=1

P (di|C)
P (di|C)

P (C)

P (C)
. (12)

Taking the log gives:

log(OC) =

n∑
i=1

log
P (di|C)
P (di|C)︸ ︷︷ ︸

increment

+ log
P (C)

P (C)︸ ︷︷ ︸
prior

. (13)

Equation 13 has an intuitive interpretation. The prior
odds are P (C)/P (C). Each descriptor then contributes an
adjustment to the posterior odds: P (di|C)/P (di|C).

This allows an alternative classification rule that’s ex-
pressed in terms of log-odds increments:

Ĉ = argmax
C

[
n∑

i=1

log
P (di|C)
P (di|C)

+ log
P (C)

P (C)

]
(14)

where the prior term can be dropped if you assume equal
class priors. The increment term is simple to compute if we
leave P (di|C) ∝ e−‖di−NNC(di)‖2 as in the original.

The benefit that comes from this formulation is that ev-
ery query descriptor does not have to affect every class’s
posterior log-odds: we can use only the significant log-odds
updates. For example, we can decide to only adjust the class
posteriors for which the descriptor gives a positive contribu-
tion to the sum in Equation 14. Table 1 shows that this se-
lectivity does not affect classification accuracy. This makes
intuitive sense in the presence of background clutter since
no feature’s presence should be taken as strong evidence
against a particular object’s presence.

5. Local NBNN
The selectivity introduced in the previous section shows

that we do not need to update each class’s posterior for each
descriptor. This section shows that by focusing on a much
smaller, local neighborhood (rather than on a particular log-
odds threshold), we can use an alternate search strategy to

Method Avg. # increments Accuracy %
Full NBNN 101 55.2 ±0.97

Positive increments only 55.0 55.6 ±1.17

Table 1. Effect of restricting increments to only the positive incre-
ments on a downsampled version (128x128) of the Caltech 101
dataset. The ± shows one standard deviation.

Figure 2. NBNN finds the nearest neighbor from each of the
classes (the shapes, in this figure). Local NBNN retrieves only
the local neighborhood, finding nearest neighbors from only some
of the classes. The shaded descriptors are those that would be used
for updating the distance totals. We only use the closest member
from any class, and don’t find an example from each class.

speed up the algorithm, and also achieve better classifica-
tion performance by ignoring the distances to classes far
from the query descriptor. As mentioned in Section 2, previ-
ous work has also restricted feature matching to local neigh-
borhoods, with the argument that comparisons of Euclidean
distances to far-off descriptors are less meaningful.

Instead of performing a search for a query descriptor’s
nearest neighbor in each of the classes’ reference sets,
we search for only the nearest few neighbors in a single,
merged dataset comprising all the features from all labelled
training data from all classes. Doing one approximate k-
nearest-neighbor search in this large index is much faster
than querying each of the classes’ approximate-nearest-
neighbor search structures. This is a result of the sublin-
ear growth in computation time with respect to index size
for approximate nearest neighbor search algorithms as dis-
cussed in Section 5.1. This allows the algorithm to scale
up to handle many more classes, avoiding a prohibitive in-
crease in runtime.

This is an approximation to the original method. For
each test descriptor in a query image, we do not find a near-
est neighbor from every class, only a nearest neighbor from
classes that are represented in the k nearest descriptors to
that test descriptor. We call this local NBNN, visualized in
Figure 2.

It is important to properly deal with the set of back-
ground classes which were not found in the k nearest neigh-
bors of d. To handle the classes that were not found in the k
nearest neighbors, we conservatively estimate their distance
to be the distance to the k+1-st nearest neighbor (this can be
thought of as an upper bound on the density of background
features). In practice, instead of adjusting the distance totals

to every class, it is more efficient to only adjust the distances
for the relatively few classes that were found in the k nearest
neighbors, but discount those adjustments by the distance to
background classes (the k+1st nearest neighbor). This does
not affect the minimum.

The local NBNN algorithm is as follows:

Algorithm 2 LOCALNBNN(Q, k)

Require: A nearest neighbor index comprising all descrip-
tors, queried using NN(descriptor ,#neighbors).

Require: A class lookup, Class(descriptor) that returns
the class of a descriptor.

1: for all descriptors di ∈ Q do
2: {p1, p2, . . . , pk+1} ← NN(di, k + 1)
3: distB ← ‖di − pk+1‖2
4: for all categories C found in the k nearest neighbors

do
5: distC = min{pj |Class(pj)=C} ‖di − pj‖2
6: totals[C]← totals[C] + distC − distB
7: end for
8: end for
9: return argminC totals[C]

The update at line 6 matches the increment from Equa-
tion 13 when we let P (di|C) ∝ e−‖di−NNC(di)‖2 , and es-
timate P (di|C) using the k + 1-st nearest neighbor. We
also experimented with using the k + b-th nearest neighbor
(for various values of b) to estimate the background density.
This performs no better than just using the k + 1-st nearest
neighbor. It seems the most critical element of local NBNN
is that we are focusing on the distinctions between the most
probable classes and setting them apart from the rest.

5.1. Approximate nearest neighbors and complexity

Our algorithm scales with the log of the number of
classes rather than linearly in the number of classes. This
analysis depends on the nearest neighbor search structure
that we use.

For both our implementation of the original NBNN and
local NBNN, we use FLANN [17] to store descriptors in
efficient approximate nearest neighbor search structures.
FLANN is a library for finding approximate nearest neigh-
bor matches that is able to automatically select from among
several algorithms and tune their parameters for a specified
accuracy. It makes use of multiple, randomized KD-trees
as described by Silpa-Anan and Hartley [18] and is faster
than single KD-tree methods like ANN [1] (used by Boiman
et al. in the original NBNN) or locality sensitive hashing
methods. The computation required and the accuracy of the
nearest neighbor search is controlled by the number of leaf
nodes checked in the KD-trees.

Following the analysis by Boiman et al. [3], let NT be

the number of training images per class, NC the number
of classes, and ND the average number of descriptors per
image. In the original, each KD-tree contains NTND de-
scriptors and each of the ND query descriptors requires an
approximate search in each of the NC KD-tree structures.
The accuracy of the approximate search is controlled by
the number of distance checks, c. The time complexity for
processing one query image under the original algorithm is
O(cNDNC log(NTND)). In our method, there is a single
search structure containing NDNCNT descriptors in which
we search for k nearest neighbors (using c distance checks,
where c � k). The time complexity for processing one
query image under our method isO(cND log(NCNTND)).
The NC term has moved inside of the log term.

6. Experiments and results
We show results on both the Caltech 101 and Caltech

256 Datasets [10, 11]. Each image is resized so that its
longest side is 300 pixels, preserving aspect ratio. We train
using 15 and 30 images, common reference points from
previously published results. SIFT descriptors [16] are ex-
tracted on a dense, multi-scale grid, and we discard descrip-
tors from regions with low contrast. We have attempted to
match as closely as possible the extraction parameters used
by Boiman et al. [3].1 We measure performance by the
average per-class classification accuracy (the average of the
diagonal of the confusion matrix) as suggested by [11].

Boiman et al. [3] also introduced an optional parameter,
α, that controls the importance given to the location of a
descriptor when matching. For all experiments, we fix α =
1.6, based on coarse tuning on a small subset of Caltech
101.

As discussed, we use FLANN [17] to store reference de-
scriptors extracted from the labelled images in efficient ap-
proximate nearest neighbor search structures.

6.1. Tuning Local NBNN

Figure 3 shows the effect of varying the cut-off, k, that
defines the local neighborhood of a descriptor. This experi-
ment shows that using a relatively low value for k improves
performance. Using too low a value for k hurts perfor-
mance, and using a much higher value for k reverts to the
performance of the original NBNN.

We also demonstrate that this improved accuracy comes
at a significant time savings over the original. Instead of
building 101 indices, local NBNN uses a single index com-
prising all the training data, storing a small amount of extra
accessory data: the object class of each descriptor.

We vary the computation afforded to both NBNN and
local NBNN, and track the associated classification accu-

1Extra details and code are available at http://www.cs.ubc.ca/
projects/local-nbnn/ for ease of comparison.

100 101 102

k (number of nearest neigbors)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

A
cc

u
ra

cy

Original NBNN

Figure 3. The effect of changing k, the number of nearest neigh-
bors retrieved from the merged index. Using only the local neigh-
bors (about 10) results in optimal performance. The absolute per-
formance numbers are lower than in our final results because we
extracted fewer SIFT descriptors for this experiment.

100 101 102

Seconds per image (1639 descriptors on average)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

u
ra

cy
 (

C
al

te
ch

 1
0
1
)

c=10

c=20

c=60
c=120

c=200

c=400 c=1000 c=2000 c=4000

c=1

c=5

c=10

c=20 c=40 c=256

Original NBNN
Local NBNN

Figure 4. Comparison of accuracy against computation for NBNN
vs local NBNN. Computation is determined primarily by the num-
ber of distance checks (c in this figure) allowed in the approximate
nearest neighbor search. For 101 classes, even a single check in
each of the 101 indices is more expensive than one search with
thousands of checks in the merged index due to the overhead of
traversing each tree. These results were obtained on Caltech 101,
using a sparser sampling of descriptors than in our final results.

racy. For local NBNN, we do a search for 10 nearest neigh-
bors, which returns an example from approximately 7 of the
classes on average. The selection of an appropriately low
number of nearest neighbors is important (see Figure 3).

To control the computation for each method, we con-
trol a parameter of FLANN’s approximate nearest neigh-
bor search: the number of leaf-nodes checked in the KD-
trees. This also determines the accuracy of the approxima-
tion. The higher the number of checks, the more expensive
the nearest neighbor searches, and the more accurate the
nearest neighbors retrieved. While FLANN does allow for
auto-tuning the parameters to achieve a particular accuracy
setting, we fix the number of randomized KD-trees used by
FLANN to 4 so that we can control the computation more
directly. This setting achieves good performance with min-
imal memory use.

http://www.cs.ubc.ca/projects/local-nbnn/
http://www.cs.ubc.ca/projects/local-nbnn/

101 102

Number of classes

10-1

100

101

102

103

A
ve

ra
g
e

se
co

n
d
s

p
er

 i
m

ag
e

Original NBNN
Local NBNN

Figure 5. We varied the number of categories from 2 up to 256
and plot the run time of the two methods. When classifying 256
categories, our method is 100 times faster than the original.

Figure 4 shows the results of this experiment. There
are significant improvements in both classification accuracy
and computation time. Looking in each of the 101 separate
class indices for just a single nearest neighbor in each, and
checking only one leaf node in each of those search struc-
tures was still slower than localized search in the merged
dataset. Even doing 1000, 2000, or 4000 leaf node checks
in the merged dataset is still faster.

6.2. Scaling to many classes

Figure 5 further shows how the computation for these
two methods grows as a function of the number of classes
in the dataset. As new classes are added in our method,
the depth of the randomized KD-tree search structures in-
creases at a log rate. As we increase the number of classes to
256, local NBNN using the merged dataset runs 100 times
faster than the original. In the original NBNN, an additional
search structure is required for each class, causing its linear
growth rate. This requires a best-bin-first traversal of each
KD-tree. However, in the case where we query a single
search structure for 10-30 nearest neighbors, the best-bin-
first traversal from root to leaf happens only once, with the
remainder of the nearest neighbors and distance checks be-
ing performed by backtracking. The preprocessing time to
build the indices is almost identical between the two meth-
ods.

6.3. Comparisons with other methods

Until now, no comparison has been done between NBNN
and spatial pyramid methods using the same base feature
set. We show those results in Table 2. (Runtime for the
original NBNN on Caltech 256 was prohibitive, so we do
not report those results.)

We choose to compare against two spatial pyramid meth-
ods. First, the original model introduced by Lazebnik et
al. [14]. Second, a recent variant by Liu et al. [15] that
takes advantage of local soft assignment in a manner simi-
lar to our local cut-off, and that uses max pooling [6] rather

than average pooling within each spatial histogram bin. We
trained a codebook of size 1024 for each of the training
set regimes (Caltech 101 with 15 and 30 training images,
Caltech 256 with 15 and 30 training images). Our spatial
pyramid was 3 levels (1x1, 2x2, and 4x4 histogram arrange-
ments). For classification, we trained one-vs-all SVMs us-
ing the histogram intersection kernel [14] and used a fixed
regularization term for all training regimes.

We also compare against some previously published fig-
ures for NBNN. Notably, local NBNN gives the best perfor-
mance of any NBNN method to date.

While local NBNN (and NBNN) performs better than
the original spatial pyramid model, it does not perform bet-
ter than the model of Liu et al. The soft assignment avoids
some of the information loss through quantization, and the
discriminative training step provides an additional benefit.

The recent kernel NBNN of Tuytelaars et al. is a compli-
mentary contribution, and we suspect that the combinations
of local NBNN with the kernel NBNN would lead to even
better performance. We hypothesize that this combination
would lead to NBNN matching or improving upon the per-
formance of state-of-the-art spatial pyramid methods.

There are other results using a single feature type that
have higher published accuracy on these benchmarks. For
example, Boureau et al. [5] show 77.1% accuracy on Cal-
tech 101 and 41.7% on Caltech 256 with 30 training im-
ages, but they use a macro-feature built on top of SIFT as
their base feature, so that is not directly comparable with
our feature set. Combining different feature types together
would also yield higher performance as shown frequently in
literature [3, 19].

7. Conclusion
We have demonstrated that local NBNN is a superior al-

ternative to the original NBNN, giving improved classifi-
cation performance and a greater ability to scale to large
numbers of object classes. Classification performance is
improved by making adjustments only to the classes found
in the local neighborhood comprising k nearest neighbors.
Additionally, it is much faster to search through a merged
index for only the closest few neighbors rather than search
for a descriptor’s nearest neighbor from each of the object
classes.

Our comparison against spatial pyramid methods con-
firms previous results [3] claiming that NBNN outperforms
the early spatial pyramid models. Further, while NBNN is
competitive with the recent state-of-the-art variants of the
spatial pyramid, additional discriminative training (as in the
NBNN kernel of Tuytelaars et al. [19]) may be necessary in
order to obtain similar performance.

As new recognition applications such as web search at-
tempt to classify ever larger numbers of visual classes, we
can expect the importance of scalability with respect to the

Caltech 101
(15 training images)

Caltech 101
(30 training images)

Caltech 256
(15 training images)

Caltech 256
(30 training images)

Results from literature
NBNN [3] 65±1.14 70.4 30.51 37
NBNN [19] 62.7±0.5 65.5±1.0 - -
NBNN kernel [19] 61.3±0.2 69.6±0.9 - -
Results using our feature set
SPM (Hard-assignment, avg.-pooling)2 62.5±0.9 66.3±2.6 27.3±0.5 33.1±0.5
SPM (Local soft-assignment, max-pooling)3 68.6±0.7 76.0±0.9 33.2±0.8 39.5±0.4
NBNN (Our implementation) 63.2±0.94 70.3±0.6 - -
Local NBNN 66.1±1.1 71.9±0.6 33.5±0.9 40.1±0.1

Table 2. Our local NBNN has consistent improvement over the original NBNN, outperforming all previously published results for
NBNN using a single descriptor. We confirm NBNN outperforms the original spatial pyramid method, but is only competitive with the
latest state-of-the-art variant.

1 Boiman et al. did not do an experiment with 15 images on this dataset. The 30.5 is an interpolation from their plot.
2 The original spatial pyramid match by Lazebnik et al. [14] (re-implementation).
3 A recent variant of the spatial pyramid match from Liu et al. [15] (re-implementation).
4 Our experiment using NBNN achieves 63.2 ± 0.9 compared to 65.0 ± 1.14 from [3]. The original implementation is not available, and we have

had discussions with the authors to resolve these differences in performance. We attribute the disparity to unresolved differences in parameters of
our feature extraction.

number of classes to continue to grow in importance. For
example, ImageNet [8] is working to obtain labelled train-
ing data for each visual concept in the English language.
With very large numbers of visual categories, it becomes
even more apparent that feature indexing should be used to
identify only those categories that contain the most similar
features rather than separately considering the presence of
a feature in every known category.

References
[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. Journal of the ACM,
45(6):891–923, Nov. 1998. 4

[2] R. Behmo, P. Marcombes, A. Dalalyan, and V. Prinet. To-
wards optimal naive bayes nearest neighbor. In ECCV, 2010.
2

[3] O. Boiman, E. Shechtman, and M. Irani. In defense of
nearest-neighbor based image classification. In CVPR, 2008.
1, 2, 4, 5, 6, 7

[4] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning
mid-level features for recognition. In CVPR, 2010. 2

[5] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun.
Ask the locals: multi-way local pooling for image recogni-
tion. In ICCV, 2011. 2, 6

[6] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analy-
sis of feature pooling in visual recognition. In ICML, 2010.
6

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In Workshop
on Statistical Learning in Computer Vision, ECCV, 2004. 1

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, F.-F. Li, and
L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009. 7

[9] P. Domingos and M. Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Journal of Machine
Learning, 29(2):103–130, 1997. 2

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
Bayesian approach tested on 101 object categories. In Work-
shop on Generative-Model Based Vision, CVPR, 2004. 5

[11] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Cat-
egory Dataset. Technical report, California Institute of Tech-
nology, 2007. 5

[12] F. Jurie and B. Triggs. Creating efficient codebooks for vi-
sual recognition. In CVPR, 2005. 1

[13] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient
subwindow search: a branch and bound framework for object
localization. PAMI, 31(12):2129–42, Dec. 2009. 1

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-
tures: Spatial Pyramid Matching for Recognizing Natural
Scene Categories. CVPR, 2006. 1, 2, 6, 7

[15] L. Liu, L. Wang, and X. Liu. In Defense of Soft-assignment
Coding. In ICCV, 2011. 2, 6, 7

[16] D. G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 60(2):91–110, Nov. 2004. 5

[17] M. Muja and D. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In VISSAPP, 2009.
4, 5

[18] C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast
image descriptor matching. In CVPR, 2008. 4

[19] T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell. The
NBNN kernel. In ICCV, 2011. 2, 6, 7

[20] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, 2010. 2

