
Spatially Local Coding for Object Recognition

Sancho McCann and David G. Lowe

Department of Computer Science, University of British Columbia

Abstract. The spatial pyramid and its variants have been among the
most popular and successful models for object recognition. In these mod-
els, local visual features are coded across elements of a visual vocabu-
lary, and then these codes are pooled into histograms at several spatial
granularities. We introduce spatially local coding, an alternative way to
include spatial information in the image model. Instead of only coding
visual appearance and leaving the spatial coherence to be represented by
the pooling stage, we include location as part of the coding step. This is
a more flexible spatial representation as compared to the fixed grids used
in the spatial pyramid models and we can use a simple, whole-image re-
gion during the pooling stage. We demonstrate that combining features
with multiple levels of spatial locality performs better than using just a
single level. Our model performs better than all previous single-feature
methods when tested on the Caltech 101 and 256 object recognition
datasets.

1 Introduction

Models based on histograms of visual word frequencies have been quite successful
for object recognition, delivering good results on varied datasets. The spatial
pyramid was introduced by Lazebnik et al. [1] to allow the representation to
account for the spatial distribution of these visual features. In this model, visual
features are coded across elements of a visual vocabulary, and these codes are
pooled into histograms at several spatial granularities.

Many improvements have been made to the original spatial pyramid model.
These include replacing nearest neighbor vector quantization with sparse coding
[2] or localized soft assignment [3] and replacing average pooling with max-
pooling in each spatial bin [4, 5, 3, 2]. Boureau et al. [4] analyzed the various
choices available during the coding and pooling stages: hard assignment vs. soft
assignment, average pooling vs. max-pooling, and the linear kernel vs. the his-
togram intersection kernel.

It is useful to view these approaches in the context of how each method
attends to spatial locality and appearance locality. Prior to spatial pyramids,
the bag-of-features method [6] enforced appearance locality in the coding step
by its nearest-neighbor vector quantization. Using only a whole-image pooling
region, it did not enforce any spatial locality. The spatial pyramid introduced
spatial locality using a spatially hierarchical pooling stage. The sparse coding
spatial pyramid method [2] takes a different approach to appearance locality that

2 Sancho McCann and David G. Lowe

can select very different bases for patches that are visually similar [7]. Boureau
et al. [5] re-instated stricter appearance locality by modifying the pooling stage
to enforce to appearance locality. Table 1 presents a taxonomy of these methods
based on how they attend to appearance and spatial locality.

Table 1: A taxonomy of histogram-based recognition models focusing on how
they attend to appearance and spatial locality. Spatially local coding moves
spatial locality into the coding step.
Method Appearance locality Spatial locality

Bags-of-features [6] Coding -
Spatial pyramid [1] Coding Pooling
Sparse coding [2] Sparse coding Pooling
LLC [7] Local coding Pooling
“Ask-the-locals” sparse coding [5] Sparse coding + Pooling Pooling
Spatially local coding (this work) Coding Coding

In contrast to the spatial pyramid approaches, we explore moving the task
of enforcing spatial locality into the coding step. We first present more detail
about the related spatial pyramid methods. Then we present our method, tuning
and implementation details, and finally, experimental results on Caltech 101 and
Caltech 256.

2 Related Methods

2.1 The Coding/Pooling Pipeline

As our method relates closely to the previous bag-of-features and spatial pyramid
approaches, we will explain our method in the context of these other methods.
This will facilitate comparisons with these approaches in Section 6.

We adopt the coding/pooling framework of Boureau et al. in which all the
bag-of-features and spatial pyramid methods can be seen as various choices for
a coding and pooling step. Given an image I, we first do feature extraction:
Φ(I) : I 7→ {(φ1, x1, y1), (φ2, x2, y2), . . . (φnI , xnI , ynI)}. The features φi are
typically local image descriptors (SIFT, for example) and they vary in number
from image to image (nI). The pixel location at which feature i is centered is
(xi, yi).

After we extract features, we code them using some coding function g((φi, xi, yi)).
In previous work, this coding function has included nearest neighbor vector quan-
tization, sparse coding, soft assignment, and localized soft assignment. In bags-
of-features and spatial pyramid methods, the coding has been limited to the
appearance portion of the descriptor φi, such that g((φi, xi, yi)) = (ĝ(φi), xi, yi).
That is, the extracted descriptor’s appearance is converted into a coded version,
still associated with the original pixel location.

Spatially Local Coding for Object Recognition 3

We’ll now give some concrete examples of the appearance coding function ĝ
for the coding methods just mentioned. In these examples, assume that we have
constructed a dictionary D of k appearance elements. This is often referred to
as a codebook, and the elements called codewords.

For nearest neighbor vector quantization, we use a 1-of-k coding:

ĝ(φi) = [ui1, ui2, . . . , uik] : uij =

{
1 if j = argmina ‖φi −Da‖,
0 otherwise

(1)

For soft assignment, demonstrated by van Gemert et al. [8], a feature is coded
across many codebook elements instead of just one:

ĝ(φi) = [ui1, ui2, . . . , uik] : uij =
exp(−β‖φi −Dj‖2)∑k
a=1 exp(−β‖φi −Da‖2)

(2)

where β is a parameter controlling how widely the assignment distributes the
weight across all the codewords. A small β gives a broad distribution, while a
large β gives a peaked distribution, more closely approximating hard assignment.

This is further improved by Liu et al. [3], who use localized soft assignment.
Instead of distributing the weight across all codebook elements, they confine the
soft assignment to a local neighborhood around the descriptor being coded. Let
NN(κ)(φi) be the set of κ nearest neighbors to φi in D. Then, the localized soft
assignment coding is:

ĝ(φi) = ui = [ui1, ui2, . . . , uik] : uij =
exp(−βd(φi,Dj)∑k

a=1 exp(−βd(φi,Da))
(3)

d(φi,Dj) =

{
‖φi −Dj‖2 if Dj ∈ NN(κ)(φi)
∞ otherwise

Sparse coding ([2], [4]) codes a descriptor by using the coefficients of a linear
combination of the codewords in D, with a sparsity-promoting l1 norm:

ĝ(φi) = ui = argmin
u∈Rk

‖φi −Du‖22 + λ‖u‖1 (4)

Locality constrained linear coding (LLC) is similar, but adds a penalty for
using elements of the codebook that have a large Euclidean distance from the
descriptor being coded [7].

After choosing one of the above coding functions for ĝ, we obtain the coding
for every descriptor extracted from an image: g((φi, xi, yi)) = (ui, xi, yi).

The pooling stage combines these coded features within an image region into
a histogram. This histogram hm associated with spatial pooling region Sm is
obtained using a pooling function:

hm = f({ui|(xi, yi) ∈ Sm}). (5)

4 Sancho McCann and David G. Lowe

The structure of the spatial pooling regions S varies between methods. In the
bag-of-features approach of Csurka et al. [6], there is just a single spatial pooling
region—one comprising the entire image. In the spatial pyramid, there are several
spatial pooling regions—one comprising the entire image and additional regions
that split the image into quadrants and even finer subdivisions.

Previous work has chosen between two options for the pooling function:
average-pooling and max-pooling. Average-pooling produces a histogram that
represents the average value of u within a spatial pooling region. Max-pooling
instead takes the maximum value of each dimension of u within a spatial pooling
region.

havgm =

∑
{i|(xi,yi)∈Sm} ui

|{(xi, yi) ∈ Sm}|
(6)

hmaxm = [hm1, hm2, . . . , hmk] where

hmj = max{uij |(xi, yi) ∈ Sm} (7)

The final image representation used by the classifier is a concatenation of
those histograms hm:

H = [h1h2 . . .hM] (8)

2.2 Other Spatial Models

We present in Section 3 perhaps the simplest approach for adding spatial infor-
mation to the local features, but first, we outline relevant previous work that
has attempted to account for the spatial layout of visual features.

Boiman et al., in their Naive Bayes nearest neighbor work [9], append a
weighted location to the feature vectors, which matches our approach. However,
in contrast with the coding/pooling pipeline, they do not quantize features using
a codebook. They instead maintain an index of all features extracted from the
training data.

Zhou et al. [10] use a mixture of Gaussians to model visual appearance,
followed by spatially hierarchical pooling of the local features’ membership in
each of the mixture’s components. This is essentially a variant of the spatial
pyramid model where soft codeword assignment is performed via a Gaussian
mixture model, and better results have been achieved by spatial pyramids using
localized soft assignment coding and max-pooling [3].

Krapac et al. [11] introduced a compact Fisher vector coding to encode spa-
tial layout of features. They first learn an appearance codebook using k-means
or a mixture of Gaussians. Then, for each appearance component, they learn a
mixture of Gaussians to represent its spatial distribution. While their represen-
tation is more compact, their evaluation shows marginal (if any) improvement
over SPM in terms of classification accuracy.

Oliveira et al. introduced a method called sparse spatial coding [12]. In their
work, they code a descriptor using sparse codebook elements nearby in descriptor

Spatially Local Coding for Object Recognition 5

space. In this sense, it is very close to LLC [7]. In contrast to our work, despite
their method’s name, sparse spatial coding is local in descriptor space, not pixel
space. As a separate contribution, they introduce a new learning stage called
Orthogonal Class Learning that results in better performance than the standard
SVM classifier. However, that work is complementary to the work improving
the coding/pooling pipeline. Their results using the standard SVM classifier are
inferior to LLC [7], NBNN [9], and sparse coding SPM [2].

3 Spatially Local Coding

Our method differs from the previous coding/pooling methods in that we choose
a coding function g that directly handles spatial locality, and use a single, whole-
image pooling region during the pooling stage. Instead of choosing g(φi, xi, yi) =
(ĝ(φi), xi, yi), we simultaneously code φi and the location (xi, yi). In the standard
models, φi = [φi1, φi2, . . . , φid]. In spatially local coding, we introduce use a

location-augmented descriptor: φ
(λ)
i = [φi1, φi2, . . . , φid, λxi, λyi]. Where λ ∈ R

is a location weighting factor giving the importance of the location in feature
matching.

For example, hard assignment, nearest neighbor vector quantization becomes:

g(φi, xi, yi) = ui : uij =

{
1 if j = argmina ‖[φ

(λ)
i −D

(λ)
a ‖,

0 otherwise
(9)

where we have constructed the codebook D(λ) by k-means clustering over a set of
location-augmented descriptors and locations extracted from the training data.

All of the coding functions presented in Section 2 can use the location-
augmented descriptors in place of the standard appearance-only descriptors.

In summary, spatially local coding uses location-augmented feature vectors,
and a single, whole-image spatial pooling region, because the features themselves
already carry sufficient spatial information. We have moved the task of main-
taining spatial locality into the coding stage. Previously, this has been left for
the pooling stage.

One advantage of spatially local coding is that we avoid having to commit to
artificial grid boundaries to define the spatial pooling regions. Other authors have
had to work around this by experimenting with alternate binning geometries to
engineer one that performs well for their problem [13], or supervised learning of
optimal pooling regions from an over-complete set of rectangular bins [14]. Both
of these methods keep the responsibility for spatial locality in the pooling stage.

Instead, our λ parameter defines a receptive field associated with each code-
book element.

3.1 Multi-level Spatially Local Coding

The λ parameter plays an important role in our model. If we set λ = 0, we revert
to the standard bag-of-features representation. If we set λ to be high, we learn

6 Sancho McCann and David G. Lowe

features that are very strictly localized. Figure 1 shows that it is possible to de-
termine a somewhat optimal setting for λ (approximately 1.5 for the Caltech 101
dataset). However, the specific λ may depend on the particulars of the dataset.
Instead of committing to a single λ, we build several codebooks, each with a
different λ, and code image features across all of the codebooks simultaneously.
This is similar in spirit to having multiple levels in the spatial pyramid, with
each level dividing space into finer and finer regions. Table 2 shows that this
combination is beneficial.

102 103 104 105

Codebook dimensions

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
v
e
ra

g
e
 c

la
ss

 a
cc

u
ra

cy

0.00

0.75

1.50

3.00

Caltech 101 (15 training images)

λ = 0.00

λ = 0.75

λ = 1.50

λ = 3.00

Fig. 1: The performance of single-codebook SLC is dependent on the choice of
λ. Regardless of the choice of λ, the optimal codebook dimensionality is similar.
Based on this observation, we can choose to use the same dimensionality across
all of the codebooks in a multi-λ model.

Table 2: The experimental setting of these results is explained in detail in Section
6. This shows that the combination of multiple codebooks, each with a different
λ-weighting, produces higher classification accuracy than any of the codebooks
individually.

Codebook (8192D) Caltech 101 (15 training)

λ = 0.00 52.4 ± 0.4
λ = 0.75 61.1 ± 0.2
λ = 1.50 66.5 ± 0.5
λ = 3.00 64.9 ± 0.3
4-level (linear kernel) 68.4 ± 0.2

Figure 2 shows the types of features learned by our system. For this visual-
ization, we choose a particular category and determine the per-codeword weights
derived from the linear SVM model (the SVM training is described further in
Section 6). These are the codewords that most signal the presence of the object

Spatially Local Coding for Object Recognition 7

of interest. We show the distribution of features found in the training images that
match the top-weighted codewords. The SVM can choose between unlocalized
and highly localized features.

killer-whale sunflower dice car-side zebra

Fig. 2: Visualization of top-ranked features (hand-picked from among the top
ten) for five of the object categories. The top row is the spatial distribution of
each codeword and the second row is the average appearance of each codeword
(as in Fig. 3). The subsequent rows show where occurrences of the codewords are
centered in particular training images. Looking down each column shows that
these codewords tend to be associated with particular parts or textures.

4 Optimal Codebook Size and Model Size

In [1], Lazebnik et al. reported their model reached optimal performance for
Caltech 101 with approximately 200-400 codewords. We verify that in Fig. 4.
We also confirm that localized soft assignment coding [3] achieves superior per-
formance and can effectively make use of more codebook elements. Our model
performs even better, but requires more codebook elements (for this figure, we
used 4-codebook SLC with λ = 0, 0.75, 1.5, 3.0, localized soft assignment, and
max-pooling).

These results may seem counter to those reported by Chatfield et al. in [15],
who report performance of spatial pyramid methods never decreasing on Caltech
101 as codebook size grew up to 8,000 dimensions. However, those results were
shown for a much denser SIFT sampling density than used in our experimental
setups. We extract single-scale SIFT every 8 pixels. Chatfield et al. extracted
SIFT at 4 scales every 2 pixels, resulting in approximately 64× the descriptors

8 Sancho McCann and David G. Lowe

sa
tu

rn
d
ic

e
ca

r-
si

d
e

Fig. 3: Each pair of rows is a visualization of the top ten features from an object
category. The scatter-plots show the spatial distribution of each codeword, while
the grey-scale snippets show their average appearance.

as in our experimental setting. In Section 6, we show some results at higher
extraction densities and note that at higher densities, the optimal codebook
dimensionality is higher. We hypothesize that Chatfield et al. had not reached
that optimal dimensionality for their extremely dense extraction setting.

Our results match those by Boureau et al. [4] who reported that on Caltech
101, optimal codebook size is relatively low for hard assignment coding, higher
for soft assignment coding, and higher when extraction densities increase. These
trends are also observed by van Gemert et al. [8].

Comparing the required codebook size is useful, as it points to a potential
increase in the computational cost of the coding phase, but comparing the result-
ing model size is also useful, as this affects the computational cost of learning and
testing. In 3-level spatial pyramid models, the model dimensionality is 21× the
size of the codebook. This is due to the 21 spatial pooling regions (1 whole-image
region, 2 × 2 regions in the second level, and 4 × 4 regions at the third level).
Figure 4 also compares the methods based on their model dimensionality, not
just their codebook size. 4-codebook SLC produces better classification accuracy
than a state-of-the-art spatial pyramid at comparable model dimensionalities.

5 Efficient Codebook Construction

As highlighted in the previous section, the codebook size used by our model
is significantly larger than those used by spatial pyramid methods. Efficient
codebook construction becomes important. The standard algorithm for k-means
takes O(nkd) per iteration, where n is the number of data points (SIFT features)
being clustered into k clusters and d is the data dimensionality. We used two
approximations in our implementation of k-means to achieve efficient clustering.

Spatially Local Coding for Object Recognition 9

102 103 104 105

Codebook dimensionality

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

A
v
e
ra

g
e
 c

la
ss

 a
cc

u
ra

cy

103 104 105

Model dimensionality

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Caltech 101 (15 training images): Codebook and model dimensionality vs. accuracy

Original SPM (3-levels, intersection kernel)

Localized soft assignment (3-levels, intersection kernel)

SLC (4-codebooks, linear kernel)

Fig. 4: We compare the performance of the original spatial pyramid model with
the localized soft assignment variant and our SLC model. The localized soft as-
signment performs better than the original and requires larger codebook sizes
for optimal performance. Our SLC model achieves even better performance, but
requires even more codebook dimensions. When comparing the model dimen-
sionalities (21× the size of the codebook to account for the spatial pyramid
bins, or 4× the size of the codebook to account for our 4-codebook SLC), SLC
outperforms the others at the equivalent model dimensionalities.

First, we use FLANN (Fast Library for Approximate Nearest Neighbors)
[16] to perform approximate assignment of data points to clusters during each
iteration of k-means. FLANN automatically selects and tunes its approximate
nearest neighbor search algorithm to the particulars of the dataset in order to
achieve a specified accuracy with maximum efficiency. This is similar to the
approximate k-means described by Philbin et al. in [17], but with more precise
control of the approximation error. Figure 5 shows how classification performance
and construction time is affected by changing FLANN’s approximation accuracy.

Second, we have observed a small improvement in classification accuracy by
using the kmeans++ [18] initialization method rather than random initializa-
tion. However, this initialization method is expensive, so we use a subsampled
kmeans++ initialization that does not significantly affect our results. Instead of
performing kmeans++ initialization using all descriptors being clustered, we do
kmeans++ initialization using a random 10% of the descriptors. This gives the
benefit of an improved initialization at a fraction of the cost. When using subsam-
pled kmeans++ initialization instead of full kmeans++ initialization, construc-
tion time (clustering 1,000,000 descriptors into a 4096-dimensional codebook)
with 95% accuracy drops from 37 minutes to 20 minutes. At 80% accuracy, the
construction time drops from 23 minutes to 12 minutes. Note that exact kmeans
using full kmeans++ initialization requires approximately 240 minutes in this

10 Sancho McCann and David G. Lowe

0.0 0.2 0.4 0.6 0.8 1.0
K-means approximation accuracy

0.475

0.480

0.485

0.490

0.495

0.500

0.505

0.510

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy 240 min

37 min

23 min

18 min

16 min

15 min

Fig. 5: Codebooks produced by approximate k-means give similar classification
accuracies as codebooks produced by the exact k-means algorithm. The con-
struction time for several data points is shown. In this experiment, we clustered
1,000,000 features into 4096 codewords to use in a bag-of-features model. Ini-
tialization was with kmeans++. The dataset was Caltech 101, using 15 training
images per category. (Dataset details are in Section 6.)

setting (see Fig. 5). We use 90% target accuracy and subsampled kmeans++ in
all of our following experiments.

6 Experiments

We compare spatially local coding against a variety of state-of-the-art spatial
pyramid variants on Caltech 101 [19] and Caltech 256 [20].1

We resize Caltech 101 and Caltech 256 images to fit inside a 300× 300 pixel
square. This is consistent with the published results we compare against. We
compared methods using 15 and 30 training images per category for Caltech
101, and using 30 training images per category for Caltech 256, all common
points of reference from the literature.

We first learn a codebook using a random subsampling of 1,000,000 descrip-
tors from the training set. This is an appearance-only codebook for all of the
spatial pyramid methods. For our SLC method, we learn multiple spatially local
codebooks, with λ = {0, 0.75, 1.50, 3.00}.

Then, we form the spatial pyramid or SLC representations of the training
images. For our implementation of the original spatial pyramid, we use nearest-
neighbor vector quantization and average pooling in three spatial pyramid levels,
as in [1]. For our implementation of the localized soft assignment spatial pyramid,
we use soft assignment over the ten nearest codebook elements, and max-pooling
in three spatial pyramid levels as in [3]. For our SLC model, we also use soft
assignment over the ten nearest codebook elements from each λ-level, and max-
pooling over a global spatial pooling region. In [3], they showed results motivating

1 Code is available at http://www.cs.ubc.ca/projects/spatially-local-coding for ease
of comparison.

Spatially Local Coding for Object Recognition 11

a small neighborhood, with ten neighbors being the optimal for Caltech 101. We
confirmed that this still holds in our codebooks.

We learn for each class a one-vs-all SVM (using the LibSVM library), se-
lecting the regularization parameter via cross-validation. For each run of the
experiment, we record the average class accuracy over 101 or 256 classes (ignor-
ing the background class as suggested by [20]).

We experimented with both the linear SVM and histogram intersection ker-
nels SVM, but found that the linear SVM outperforms the histogram intersection
kernel for our model (see Fig. 6). Thus, in Table 3, the results shown for our
SLC model are obtained using a linear SVM.

8192 16384 32768 65536
SLC codebook dimensionality

41.5
42.0
42.5
43.0
43.5
44.0
44.5
45.0
45.5

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

Caltech 256 (30 training images)

8192 16384 32768 65536
SLC codebook dimensionality

69.0

69.5

70.0

70.5

71.0

71.5

72.0
Caltech 101 (15 training images)

Linear

Intersection

Fig. 6: Our model yields best results with a linear SVM. Only at low dimen-
sionalities on Caltech 256, where the performance of both SVM types is low,
does the intersection kernel outperform the linear SVM. At optimal codebook
dimensionalities, our model’s performance using a linear SVM dominates the
performance of the histogram intersection kernel.

All of our reported numbers are based on 10 repetitions of the experiment,
each time selecting a different training/testing split, building new codebooks,
and learning new models. We report the mean and standard error of the mean.

The methods we compare against have generally published their results based
on single-scale 16x16 SIFT features [21] using the VLFeat implementation [22]
extracted every 8 pixels [1, 3, 4, 2]. We perform the majority of our comparisons
at this setting as well. We re-implement the original spatial pyramid method
[1] and the best performing state-of-the-art variant, localized soft assignment
[3] so as to provide a head-to-head comparison based on our extracted features.
To report the classification accuracy achieved by our re-implementations, we
ran them at various dimensionalities, since their performance is dependent on
codebook dimensionality, and we report the highest result we could achieve with
the other methods. Despite our results on SLC being obtained at higher codebook
dimensionalities, this comparison is fair, since the model dimensionalities are
comparable (see Fig. 4), and performance only deteriorates for the other methods
as we increase their codebook size.

Table 3 shows that spatially local coding achieves better classification accu-
racy than all previous alternatives using single-scale SIFT features on Caltech
101 and Caltech 256.

12 Sancho McCann and David G. Lowe

Boureau et al. [5] have reported higher accuracy than any of the other previ-
ous methods. However, they achieve these results using a denser SIFT sampling
(every 4 pixels), and use a feature based on the concatenation of 4 individ-
ual SIFT features within a small region which they call macrofeatures. We set
these results aside from the rest of the reported numbers to highlight this differ-
ence, and run a separate comparison where we also extract SIFT every 4 pixels
(however, we don’t construct their macrofeatures). Spatially local coding again
achieves a higher classification accuracy.

Wang et al. [7] use another slightly different feature set for their experiments
on locality constrained linear coding. They extract multiscale features (HOG)
every 8 pixels at three different sizes. We again set these reported results aside
from the rest and run a separate comparison.

While the above comparisons are sufficient to demonstrate SLC’s superior
performance as compared to state-of-the-art spatial pyramids, we provide an
additional evaluation at an even denser extraction setting, extracting multiscale
SIFT every 4 pixels.

These experiments show that spatially local coding outperforms all previous
spatial pyramid methods for object recognition on Caltech 101 and Caltech 256.
We have shown this in the setting of single-scale and multi-scale SIFT features,
at two different extraction densities. In addition, we have provided a detailed
survey and comparison of the previously published results, making clear how
they are comparable with each other or not.

To the best of our knowledge, any previous work reporting higher accuracy
than ours combines together multiple complimentary feature types.

6.1 Notes on Timing

Codebook construction scales logarithmically with the number of codebook di-
mensions, because we use approximate matching at each k-means step. SLC’s
multiple codebook construction can be multi-threaded, giving elapsed real time
for codebook construction that scales logarithmically with the number of code-
book dimensions.

Vector quantization also scales logarithmically with the number of codebook
dimensions and linearly with the number of codebooks. To code 7680 training
images (for Caltech 256), 1024D SPM required 2 minutes. SLC using four 16384D
codebooks takes 11 minutes. That is 5.5x the compute time, despite the model
size being 64x as large.

SVM training is the bottleneck regardless of the approach. This time is un-
affected by switching from local soft assignment SPM to SLC. Both use soft
assignment across a small number of nearest neighbors, giving sparse feature
vectors. Gram matrix construction for Caltech 256’s 7680 training images took
55 minutes using local soft assignment SPM with 8192D, and 50 minutes under
SLC using four 8192D dictionaries. Doubling the SLC dimensionality to 16384D
increased the gram matrix construction time to 65 minutes.

Spatially Local Coding for Object Recognition 13

Table 3: Results on Caltech 101 (using 15 and 30 training examples per class)
and 256 (using 30 training examples per class). We compare our SLC method
against previously published figures and against re-implementations of the orig-
inal spatial pyramid and localized soft assignment tested on our feature set. The
numbers we report for our re-implementations of previous methods are the best
results we could achieve from among a range of codebook dimensionalities. Bold
method names show our experiments; the others are from the literature.

Cal. 101 (15) Cal. 101 (30) Cal. 256 (30)

Single-scale SIFT features
extracted every 8 pixels

Original SPM [1] 56.4 64.6± 0.8 -
Original SPM (ours) 57.8± 0.3 65.2± 0.4 30.0± 0.4
Localized soft assignment [3] - 74.21± 0.81 -
Localized soft assignment (ours) 66.2± 0.4 72.2± 0.3 37.2± 0.2
Sparse Coding SPM [2] 67.0± 0.45 73.2± 0.54 34.02± 0.35
Sparse Coding SPM [4] - 71.8± 1.0 -
SLC [8192d × 4] 68.4± 0.2 75.5± 0.4 38.9± 0.3
SLC [16384d × 4] 68.3± 0.3 75.7± 0.4 40.0± 0.2

Multi-scale features
extracted every 8 pixels

LLC [7] (HOG) 65.43 73.44 41.19
Localized soft assignment [3] (SIFT) - 76.48± 0.71 -
SLC [8192d × 4] 71.4± 0.4 78.0± 0.4 41.8± 0.3
SLC [16384d × 4] 72.5± 0.3 79.2± 0.2 43.4± 0.2
SLC [32768d × 4] 70.9± 0.4 77.2± 0.6 44.3± 0.1
SLC [65536d × 4] 69.6± 0.3 77.5± 0.4 43.4± 0.3

Single-scale SIFT features
extracted every 4 pixels

Boureau et al. [5] - 77.3± 0.6 41.7± 0.8
SLC [8192d × 4] 71.0± 0.3 77.6± 0.2 41.9± 0.2
SLC [16384d × 4] 71.1± 0.3 78.9± 0.2 43.5± 0.3
SLC [32768d × 4] 71.6± 0.4 79.6± 0.8 44.6± 0.2
SLC [65536d × 4] - - 45.1± 0.2

Multi-scale SIFT features
extracted every 4 pixels

SLC [65536d × 4] 72.7± 0.4 81.0± 0.2 46.6± 0.2

7 Conclusion

Spatially local coding is a simpler and more flexible way to enforce spatial local-
ity in histogram-based object models than previous approaches. By simultane-
ously coding appearance and location, we remove the necessity of a complicated
pooling stage to adequately model the spatial locations of visual features. We
have shown that a combination of location-augmented codebooks gives better
classification accuracy than spatial pyramid models.

The large codebook dimensionality required by our models potentially poses
extra computational cost, but we have shown approximations that speed up the
codebook construction process and an evaluation of the effect of those approxi-
mations on classification accuracy.

We have presented these results alongside a useful survey of previously pub-
lished results and our re-implementations of previous results. To the best of
our knowledge, we have shown the highest classification accuracy achieved on
Caltech 101 and Caltech 256 using a single visual feature type.

14 Sancho McCann and David G. Lowe

References

1. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. CVPR (2006)

2. Yang, J., Yu, K., Gon, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: CVPR. (2009)

3. Liu, L., Wang, L., Liu, X.: In Defense of Soft-assignment Coding. In: ICCV. (2011)
4. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for

recognition. In: CVPR. (2010)
5. Boureau, Y.L., Le Roux, N., Bach, F., Ponce, J., LeCun, Y.: Ask the locals:

multi-way local pooling for image recognition. In: ICCV. (2011)
6. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization

with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV. (2004)

7. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR. (2010)

8. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual
word ambiguity. PAMI 32 (2010) 1271–83

9. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: CVPR. (2008)

10. Zhou, X., Cui, N., Li, Z., Liang, F., Huang, T.S.: Hierarchical Gaussianization for
Image Classification. (2009)

11. Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with Fisher vectors for
image categorization. In: ICCV. (2011)

12. Oliveira, G.L., Nascimento, E.R., Vieira, A.W., Campos, M.F.: Sparse Spatial
Coding: A Novel Approach for Efficient and Accurate Object Recognition. In:
ICRA. (2012)

13. Laptev, I., Marszalek, M., Schmid, C.: Learning realistic human actions from
movies. In: CVPR. (2008)

14. Jia, Y., Huang, C.: Beyond Spatial Pyramids : Receptive Field Learning for Pooled
Image Features. In: NIPS 2011 Workshop on Deep Learning and Unsupervised
Feature Learning. (2011)

15. Chatfield, K., Lempitsky, V., Vedaldi, A.: The devil is in the details: an evaluation
of recent feature encoding methods. In: BMVC. (2011)

16. Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm
configuration. In: VISSAPP. (2009)

17. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: CVPR. (2007)

18. Arthur, D., Vassilvitskii, S.: k-means ++ : The Advantages of Careful Seeding.
In: Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
New Orleans, Louisiana, Society for Industrial and Applied Mathematics (2007)
1027–1035

19. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object cate-
gories. In: Workshop on Generative-Model Based Vision, CVPR. (2004)

20. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical
report, California Institute of Technology (2007)

21. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60
(2004) 91–110

22. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms (www.vlfeat.org) (2008)

