
Object Categorization Using Sparse Nearest Neighbor Distances
For Improved Accuracy and Scalability

Sancho McCann and David G. Lowe

Laboratory for Computational Intelligence
University of British Columbia

Vancouver, Canada

Sparse Update Nearest Neighbors

A large time savings can come from changing the
search strategy for nearest neighbors. Instead of
searching for a query descriptor's nearest neighbor in
each of the classes, we search for the nearest
neighbors in a merged dataset comprising all training
features from all classes.

Searching this large index for a few nearest neighbors
is much faster than searching each class's index for a
nearest neighbor.

Additionally, for each query feature, we only find the k
nearest neighbors in this merged dataset, updating
the associated classes' distances, and lower-bound
the distances to the non-retrieved classes to be the
distance to the k+1 nearest neighbor.

Improved Classification

Tuning k:

How many nearest neighbors in the merged index do
we need to retrieve? We only need a small number of
nearest neighbors, retrieving neighbors from only the
most likely classes for each query descriptor.

This sparsity not only saves on computation time, but
improves performance of the classifier.

Caltech 101 Results (15 training images per class):

References

[1] Oren Boiman, Eli. Shechtman, and Michal Irani. “In
Defense of Nearest-Neighbor Based Image
Classification”. In proceedings of the IEEE Conference
on Computer Vision and Patern Recognition (CVPR),
2008.
[2] Marius Muja and David G. Lowe. “Fast
Approximate Nearest Neighbors with Automatic
Algorithm Configuration”. In the International
Conference on Computer Vision Theory and
Application (VISAPP), 2009.

Scalability

Accuracy vs Speed

Accuracy-vs-Speed Tradeoff:

We use FLANN, an approximate nearest neighbor
search structures based on automatically tuned
randomized KD-trees [2]. One parameter is c, the
number of nodes to be checked in the KD-trees. This
parameter affects the accuracy and computation
required.

Overview

Boiman et al. [1] showed that the common practice of
vector-quantizing visual descriptors in the bag-of-
words model results in a loss of discriminativity.

Using a feature-based nearest neighbor classification
algorithm to compute image-to-class distances
achieved state-of-the-art performance.

The method from [1] scales linearly with the number of
classes. Our improvements increase classification
accuracy and give a significant speed-up when scaling
to large numbers of classes.

Naive Bayes Nearest Neighbors

The original algorithm (from [1]):

Complexity:

N
D
 is the number of descriptors per image, N

C
 is the

number of classes, N
T
 is the number of training

images per class, and c is the number of checks done
in the approximate nearest neighbor structure.

Figure 1: Naive Bayes Nearest Neighbors accumulates the
squared distances from each query feature to each of the classes.

Figure 2: The complexity of the original algorithm is linear in the
number of classes.

Figure 3: Complexity of our improvement is log in the number of
classes.

Figure 4: Empirical timing results when increasing the number of
classes from 2 up to 256. On Caltech 256, our method was 100x
faster.

Figure 5: Even doing only a single node check in each of the 101
separate indices is more expensive than one search with
thousands of node checks in our merged index. These results are
from the Caltech 101 dataset.

Figure 6: Searching for only the 10-15 nearest neighbors for each
query descriptor gives optimal performance on Caltech 101. If
many more neighbors are retrieved, enough to find an example
from each class, the benefit of the sparsity disappears, and
performance reverts to that of the original.

Method Performance

Spatial Pyramid Match (Nearest Neighbor) 42.1± 0.81%

Spatial Pyramid Match (SPM) 56.4%

Griffin's Implementation of SPM 59%

NBNN (Our implementation) 61.1 ± 1.32%

NBNN (Our improvement) 65.6 ± 0.42%

