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Sparse Update Nearest Neighbors

A large time savings can come from changing the 
search strategy for nearest neighbors. Instead of 
searching for a query descriptor's nearest neighbor in 
each of the classes, we search for the nearest 
neighbors in a merged dataset comprising all training 
features from all classes.

Searching this large index for a few nearest neighbors 
is much faster than searching each class's index for a 
nearest neighbor.

Additionally, for each query feature, we only find the k 
nearest neighbors  in this merged dataset, updating 
the associated classes' distances, and lower-bound 
the distances to the non-retrieved classes to be the 
distance to the k+1 nearest neighbor.

Improved Classification

Tuning k:

How many nearest neighbors in the merged index do 
we need to retrieve? We only need a small number of 
nearest neighbors, retrieving neighbors from only the 
most likely classes for each query descriptor.

This sparsity not only saves on computation time, but 
improves performance of the classifier.

Caltech 101 Results (15 training images per class):
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Scalability

Accuracy vs Speed

Accuracy-vs-Speed Tradeoff:

We use FLANN, an approximate nearest neighbor 
search structures based on automatically tuned 
randomized KD-trees [2]. One parameter is c, the 
number of nodes to be checked in the KD-trees. This 
parameter affects the accuracy and computation 
required.

Overview

Boiman et al. [1] showed that the common practice of 
vector-quantizing visual descriptors in the bag-of-
words model results in a loss of discriminativity.

Using a feature-based nearest neighbor classification 
algorithm to compute image-to-class distances 
achieved state-of-the-art performance.

The method from [1] scales linearly with the number of 
classes. Our improvements increase classification 
accuracy and give a significant speed-up when scaling 
to large numbers of classes.

Naive Bayes Nearest Neighbors

The original algorithm (from [1]):

Complexity:

N
D
 is the number of descriptors per image, N

C
 is the 

number of classes, N
T
 is the number of training 

images per class, and c is the number of checks done 
in the approximate nearest neighbor structure.

Figure 1: Naive Bayes Nearest Neighbors accumulates the 
squared distances from each query feature to each of the classes.

Figure 2: The complexity of the original algorithm is linear in the 
number of classes.

Figure 3: Complexity of our improvement is log in the number of 
classes.

Figure 4: Empirical timing results when increasing the number of 
classes from 2 up to 256. On Caltech 256, our method was 100x 
faster.

Figure 5: Even doing only a single node check in each of the 101 
separate indices is more expensive than one search with 
thousands of node checks in our merged index. These results are 
from the Caltech 101 dataset.

Figure 6: Searching for only the 10-15 nearest neighbors for each 
query descriptor gives optimal performance on Caltech 101. If 
many more neighbors are retrieved, enough to find an example 
from each class, the benefit of the sparsity disappears, and 
performance reverts to that of the original.

Method Performance

Spatial Pyramid Match (Nearest Neighbor) 42.1± 0.81%

Spatial Pyramid Match (SPM) 56.4%

Griffin's Implementation of SPM 59%

NBNN (Our implementation) 61.1 ± 1.32%

NBNN (Our improvement) 65.6 ± 0.42%


