
Abarenbou - A Small Vision-Based Humanoid Robotic Research

Platform

Sancho McCann

Jacky Baltes

Department of Computer Science, University of Manitoba, Winnipeg, Canada R3T2N2

sanchom,jacky@cs.umanitoba.ca

Abstract

This paper describes our latest humanoid robot
Abarenbou, a modification of the commercially avail-
able Kondo KHR-1 humanoid robotic kit. This kit pro-
vides a mechanically sound and affordable platform,
but does not provide facilities for on-board computer
vision and other sensors for active balancing. Thus,
it is not suitable as a research platform for humanoid
robotics. To overcome these limitations, we added a
pan and tilt camera mount, and a small camera. Pro-
cessing power is provided by a Sony Clie NR70V PDA
which is responsible for computer vision and higher
level reasoning. The PDA communicates with the robot
kit via a serial line. We developed software to create,
store, and play back motion sequences on the Kondo
KHR-1. Abarenbou uses arbitrary lines in the image
to localize itself within the environment. The agent
architecture of Abarenbou is implemented as behaviour
trees.

1 Introduction

Humanoid robots have always inspired the imagina-
tion of robotics researchers as well as the general pub-
lic. Up until 2000, the design and construction of a hu-
manoid robot was very expensive and limited to a few
well funded research labs and companies (e.g., Honda
Asimov, Fujitsu HOAP). Starting in about 2001 ad-
vances in material sciences, motors, batteries, sensors,
and the continuing increase in processing power avail-
able to embedded systems developers has led to a new
generation of affordable small humanoid robots (some
examples include: Pino [7], Manus I [8], Tao-Pie-Pie
[2], Roboerectus [9], and Hansa Ram [5]).

These robots cost in the range from $1000.00 to
$20,000 USD. Many hobbyists have build their own
humanoid robots, especially in Asia.

The creation of these humanoid robots also coin-
cided with an increased interest in several high profile
research oriented international robotics competitions
(e.g., RoboCup [3] and FIRA [1]). The researchers
chose robotic soccer as a challenge problem for the
academic fields of artificial intelligence and robotics
at it requires a large amount of intelligence at vari-
ous levels of abstraction (e.g., offensive vs defensive
strategy, role assignment, path planning, localization,
computer vision, motion control). These competitions
allowed researchers to compare their results to oth-
ers in a real-world environment. It also meant that
robustness, flexibility, and adaptability became more
important since these robots had to perform for ex-
tended periods of time in variable conditions. This is
in contrast to researchers that could previously fine
tune their system to the specific conditions in their
laboratory. The inaugural humanoid robotics compe-
titions at RoboCup and at FIRA were held in 2002.

Furthermore, in 2002, hobbyists formed several
popular robotics events which had less of a research
emphasis. The most popular example are the tele-
vised Robot Wars (Battle Bots) events where remote
controlled wheeled robots with weapons try to de-
stroy each other. Several of these humanoid robots
are now commercially available at a competitive price.
Even though the robustness and cost make these
remote controlled fighting robots attractive for hu-
manoid robotics researchers, the robots are not im-
mediately suitable as autonomous robot research plat-
forms.

The main disadvantages are: (a) these fighting
robots do not have sufficient processing power for on-
board vision, and (b) they have few if any sensors (e.g.,
accelerometers, gyroscopes, force sensors) to support
dynamic balancing and feedback control of the walking
gait.

This paper describes our work in converting the
Kondo KHR-1 humanoid robot kit from a remote con-

trolled fighting robot into a fully autonomous soccer
playing robot, Abarenbou. To keep the cost down,
Abarenbou uses a commonly available personal digi-
tal assistant (PDA) with a built in camera as process-
ing platform for vision and higher level reasoning. We
used the Sony Clie NR70V PDA as the brain of our
robot. The hope is that lower cost platforms such as
this will help make humanoid robotics accessible to a
larger population of researchers.

The following section describes the hardware of the
Kondo KHR-1 robot and our modifications to the
hardware. Section 3 describes the methodology we
used for developing new motions (e.g., walk, turn, and
kick). The vision processing part of our system is de-
scribed in section 4. Section 5 describes our pragmatic
Al method for localizing the robot in the playing field
and mapping the environment around the robot. The
agent architecture is described in section 6. The paper
concludes with section 7, which also gives directions
for future work.

2 Hardware Description

The Kondo KHR-1 robot is a humanoid robotics kit
with 17 degrees of freedom (DOF) controlled by servo
motors. These include two in each ankle for frontal
and lateral movement of the foot, one in each knee,
two at each hip for frontal and lateral movement of
the leg, three in each arm, and one to pan the head.
The KRS-784ICS servo provides 8.7kg/cm at 6.0 V of
torque and a maximum speed of 0.17sec/60◦. These
servos are powerful given their cost and were the main
reason that we decided on this robot kit.

The servos are controlled by two simple embedded
PIC based micro-controller systems. Each board can
control a maximum of 12 different servos; this means
that in theory the Kondo KHR-1 kit can control up
to 24 different servos. However, in practice the num-
ber of servos is limited by the maximum current that
can be driven by the controller boards. To reduce the
maximum current for the two boards, the 17 servos
of the KHR-1 are distributed equally across the two
boards. The first controller board is responsible for
the legs, whereas the upper torso, arms, and head are
controlled by the second controller board.

The two embedded systems are controlled via a
shared serial line. The controller boards accept com-
mands at 115200 baud. Commands include setting the
position (i.e., set point for all 17 servos), writing a mo-
tion (i.e., a sequence of positions), as well as reading
back positions and motions.

Figure 1: The Pan and Tilt Unit of Abarenbou. The
servos are mounted upside down to prevent stress on
the thin ribbon cable.

Several additions were made to the standard kit.
A pan and tilt camera unit was constructed using two
servo motors and the camera from a Sony Clie NR70V
PDA 1. First, we removed the camera from the Sony
Clie NR70V casing. The camera is connected to the
main board via a fragile short ribbon cable and there-
fore has only a small range of motion. A pan and tilt
unit was constructed out of two micro RC servos in
such a way that the link joint is as close as possible
to the original position of the camera. The pan and
tilt assembly allows the camera to tilt by +/- 45 de-
grees and to pan by +/- 70 degrees. The Clie itself
was mounted in a bracket attached to the front of the
robot. The PDA uses a 66 MHz Dragonball CPU for
processing and captures images with a 320x240 resolu-
tion. While the PDA does not have as much processing
power as other alternatives, it does have a serial port
for communication with Abarenbou’s control boards.

In order to control the robot using the Sony Clie
we intended to connect the robot and the Sony Clie
PDA via the serial port. The Sony Clie NR70V PDAs
provide a serial port which is intended to connect the
PDA via the hot sync cradle to a standard PC. Un-
fortunately, like many other new PDAs, the NR70V
only generates +5V and GND instead of the RS 232
standard voltages of +/- 12V. To overcome this prob-
lem, we built a level changer circuit using the Maxim
MAX232 level changer IC, which is a popular chip
specifically designed for this task. After generating
the correct voltage, we were able to send data to the
robot, but were unable to read data from the robot
successfully. Upon further investigation, we discovered
that the control circuitry on the robot did not gener-
ate 12V. Instead the client software was expected to
drive the DTR pin low, and this pin was connected via
a pull down resistor to the transmit pin on the robot.

Figure 2: Abarenbou

We generated a 12V signal using the Maxim MAX232
level changer IC in a similar manner. After this mod-
ification, we were able to send and receive data from
the robot reliably.

3 Motion Development

The serial interface to the embedded control boards
allows setting the position of the robot, reading the
current servo setting, saving a sequence of positions
with timings, and playback of those sequences.

Figure 3 shows the interface of the motion con-
trol software that we developed to control the Kondo
KHR-1. The interface allows one to move the robot
into a specific position and save this position. The in-
terface also allows one to set the trim (i.e., offset) for
all joints as well as the home position.

A separate window tab is used to combine positions
into motions. Each motion has a cycle time associated
with it and each part of a motion has a arrival time
associated with it. Thus, the interface allows the user
to easily adjust the speed of a whole motion or indi-
vidual parts of the motion. The trajectory of all joints
is shown in the window.

All positions and motions are saved in an XML file.
This allows one to easily check the syntax of the file.
Positions and motions can be loaded from an XML
file and saved on the robot. Multiple movements were
programmed onto the robot. These included the start
walking, take step with right foot, take step with left
foot, stop from left walk, stop from right walk, side-
ways step left, sideways step right, and kick with right
foot.

These movements are then available to be played
back as required by any of our programs running on

Figure 3: Interface of our motion development system.
The top window shows the development of a position,
the bottom window shows the combination of these
positions into motions.

the Clie.

4 Vision Processing

Abarenbou uses a CMOS camera as the main sen-
sor. The camera is used to approach objects in the
field of view of the robot as well as for localization
and mapping.

First, objects are extracted from the image. It is
possible to calibrate the object recognition for the
colours that we are looking for in balls, goals, etc.
We perform a colour-gradient guided flood fill which
terminates at a certain threshold. This gives a set of
potential objects, each with an average colour and size
(number of pixels). If the region meets certain criteria,
like matching a colour from the calibration and being
a minimum size, it is labeled as the appropriate object,
otherwise it is ignored. It is in this manner that we
track the ball and goals in soccer, and the obstacles in
an obstacle run.

Figure 4: The dots are centred on the pixels that are
detected as transition pixels from field to line colour.

To determine the relative location of the objects
and to help the feature based localization method de-
scribed in the following section, we use a complex cam-
era calibration based on the Tsai camera calibration
algorithm [6]. This calibration is only done once for
each robot. Given this calibration information, we are
able to map points in the image accurately to their real
world coordinates. This is essential since it allows us to
determine the distance and orientation of the robot to
a feature point (ball, goal post, line). Since Abaren-
bou has a camera that can tilt, we needed multiple
calibrations. Instead of calibrating for each possible
tilt position, we calibrate for three tilt positions and
interpolate between these.

Before localization can occur, features must be ex-
tracted from the image. The relevant features for lo-
calization on the soccer field are lines, goals, and the
centre circle. We use the lines and the goals to achieve
localization.

Every 5th column, the system scans from the bot-
tom of the image towards the top. If there is a tran-
sition from a green pixel to a white pixel, the pixel
p is remembered in a list. The scan continues up-
ward, so there may be more than one transition pixel
in a column. Figure 4 shows debugging output sent
back from the PDA highlighting these transition pix-
els. Next, lines are found by running a gradient guided
Hough transform [4]. For each point pi, a set of ad-
jacent points is determined. Triplets are formed from
these by including one point to the left of the point
pi, and one point to the right of pi. There are several
triplets that can be formed this way out of the neigh-
borhood of adjacent points. Each triplet votes for an
unbounded line in the image. This vote is fuzzified by
voting for a small range of slopes through the point
pi. Figure 5 shows an example of triplet formation
and the corresponding votes. The peaks in the Hough
accumulator space determine the equations of possi-

Figure 5: Two possible triplets surrounding a pixel,
and their corresponding votes.

Figure 6: Localizing using a known point, its relative
position, and relative orientation of a line

ble lines. For each peak in the accumulator space, we
search along the pixels determined by the line equa-
tion to find start and end points of the lines. This
results in a set of line segments.

The line segments are ordered based on their size.
The longest line segment is assumed to represent the
edge of the playing field. Given the distance and gra-
dient of the line segment, the position and direction of
the robot can be computed.

5 Localization and Mapping

Knowing the position of the ball is important. Its
relative position from the robot is easily determined
from an image. However, without knowing the world
position of the ball, the robot would often kick the ball
out of bounds or even into its own goal. Actions can
not be taken toward kicking the ball until its world
position is known. If the ball’s relative position to the
robot is known, localization of the robot will give local-
ization of the ball. This localization can be achieved
as long as a point is viewed with a known world co-
ordinate, and knowing the robot’s world bearing from
it. One instance of this is when a goal post is seen.
Once this is accomplished, dead reckoning can be used

Figure 7: An example of a captured image and asso-
ciated localization result.

with some accuracy for a short time afterward. Fig-
ure 7 shows a captured image and the localization of
the robot and ball using that image.

6 Agent Architecture

This section will give a brief introduction to the be-
haviour tree based agent architecture used in Abaren-
bou. The discussion will focus on the state transitions.
More complex features of the agent architecture (e.g.,
behaviour trees and state references) are outside of the
scope of this paper.

Designing an architecture that is flexible, versatile,
and intuitive enough for an intelligent mobile robot is
a difficult problem. This is especially true in the case
of autonomous robots with limited processing capabil-
ities.

Abarenbou uses a behaviour tree to balance the
need for deliberate planning and reactive behaviours.
The behaviours themselves are implemented as finite
state machines. As the complexity of the task in-
creases, the implementation of the state machine be-
comes more error prone.

We therefore developed a meta language to describe
the behaviors in XML. The specification of the be-
haviors includes preconditions (enter functions) and
post conditions (exit functions) of the behaviours. An
slightly simplified example of a simple behaviour that
scans for a target with increasing sweeps is shown in
Table 1. The XML schemas include additional markup
to refer to states by name (%%State("Random Walk")

access variables (%%v) and to trigger transitions to
other states (%%Transition).

Behaviours are organized into behaviour trees.
Higher level behaviours can override or enable other
lower level behaviours. For example, a “Perception”
behaviour may disable the scan for target behaviour
and enable the state “Target In Front” if it recognizes
the target.

One of the design goals of the meta language was
to be highly efficient. Therefore, instead of adding a

<State id="Scan For Target" >

<Enter>

%%v(angle) = 0;

if (previousState == %%State("Target Right Forward"))

{

%%v(newAngle) = 20; /* Turn 20 degrees first */

%%v(angleAdjust) = +10;

}

else

{

%%v(newAngle) = - 20; /* Turn 20 degrees first */

%%v(angleAdjust) = -10;

}

</Enter>

<Process>

if ((%%v(newAngle) >= -190) &&

(%%v(newAngle) <= 190))

{

if (%%v(angle) != %%v(newAngle))

{

turn((%%v(angleAdjust) * TEN_DEGREE) / 10);

%%v(angle) = %%v(angle) + %%v(angleAdjust);

}

else

{

%%v(newAngle) = - %%v(newAngle) - 40;

%%v(angleAdjust) = - %%v(angleAdjust);

}

}

else

{

%%Transition("Random Walk");

}

</Process>

</State>

Table 1: An XML schema for a behaviour that scans
for a target by turning right/left with increasing
sweeps

XML parser and interpreter to the agent, the meta lan-
guage is parsed and interpreted offline and converted
into highly efficient C code. This code is then compiled
and executed on the PDA. For example, the example
above shows that the programmer uses state names
(e.g., “Random Walk,” and “Scan For Target”). How-
ever, the states names are converted to integers in the
C code. There is some loss of the interactive aspects
of XML by requiring off-board interpreting, but this is
unavoidable due to the limited processing power avail-
able on the PDA.

An additional advantage of using a formalized state
representation language with markup in the code is
that it is possible to generate other representations.
For example, our state compiler automatically gener-
ates a state transition graph. Figure 8 shows the state
transition graph for a simple approach task. The robot
first approaches a target and then walks away from it.

7 Conclusion

This paper describes the modifications and addi-
tions that we made to convert the Kondo KHR-1 hu-
manoid fighting robot kit into a platform for humanoid
robotic soccer.

The addition of a Sony Clie PDA NR-70V with a
pan and tilt assembly provides visual feedback for the
robot. The original embedded controllers of the Kondo

Done

Scan For Target

Delay

Forward Leg Backward Leg

Target In Front Forward Target Right Forward Target Left Forward Target In Front Backward Target Right Backward Target Left Backward

Random Walk

Figure 8: Automatically generated state transition graph for a simple approach and avoid task. Solid lines are
state transitions.

KHR-1 robot are used to control the motion. The
PDA communicates via a serial line with the robot
and is able to start/stop the motions of the robot.

We use a vision-based approach to determine the
behaviour of the robot. The robot uses lines on the
playing field to localize itself on the playing field and
to map objects into the robot’s environment.

The development of the complex architecture nec-
essary for an intelligent soccer player is simplified
through the use of an XML based meta language
for behaviour trees. This meta language makes the
pre-conditions, process stack, and state transitions
explicit. The XML representation is converted into
C code, which can be compiled into efficient code
and thus does not introduce computational overhead
through its use.

We are currently investigating methods for adding
sensors (e.g., accelerometers, gyroscopes, and force
feedback) that provide feedback about the balance of
the robot. Even though active balancing is not nec-
essary for a robot playing soccer on an even surface,
it is at the heart of humanoid robotics research and is
necessary to build robots that are able to move over
uneven surfaces. This requires a reprogramming of
the PIC micro-controllers used in the Kondo KHR-1
controller boards.

References

[1] Jacky Baltes and Thomas Bräunl. HuroSot Laws
of the Game. University of Manitoba, Winnipeg,
Canada, May 2004. http://www.fira.net/hurosot.

[2] Jacky Baltes and Patrick Lam. Design of walk-
ing gaits for tao-pie-pie, a small humanoid robot.
Advanced Robotics, 18(7):713–716, August 2004.

[3] RoboCup Federation. Robocup humanoid
league 2002. WWW, November 2001.
http://www.robocup.org/regulations/ hu-
manoid/rule humanoid.htm.

[4] K. Y. Hough. Mehod and means for recognizing
complex patterns. U.S. Patent 3069654, 1962.

[5] Jong-Hwan Kim, Dong-Han Kim, Yong-Jae Kim,
Kui-Hong Park, Jae-Ho Park, Choon-Kyoung
Moon, Jee-Hwan Ryu, Kiam Tian Seow, and
Kyoung-Chul Koh. Humanoid robot hansaram:
Recent progress and developments. JACIII,
8(1):45–55, 2004.

[6] Roger Y. Tsai. An efficient and accurate camera
calibration technique for 3d machine vision. In
Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 364–374, Mi-
ami Beach, FL, 1986.

[7] Fuminori Yamasaki, Tatsuya Matsui, Takahiro
Miyashita, , and Hiroaki Kitano. Pino the hu-
manoid: A basic architecture. In Peter Stone,
Tucker Balch, and Gerhard Kraetszchmar, editors,
RoboCup-2000: Robot Soccer World Cup IV, pages
269–278. Springer Verlag, Berlin, 2001.

[8] Ruixiang Zhang, Prahlad Vadakkepat, Chee-Meng
Chew, and Janesh Janardhanan. Mechanical de-
sign and control system configuration of a hu-
manoid robot. In Proceedings of 2nd Int. Conf.
on Computational Intelligence, Robotics and Au-
tonomous Systems (CIRAS 2003), pages 15 – 18,
Singapore, December 2003.

[9] Changjiu Zhou and Pik Kong Yue. Robo-erectus:
a low-cost autonomous humanoid soccer robot. Ad-
vanced Robotics, 18(7):717–720, 2004.

